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A theory of the heat-exchange crisis on a heated surface with drops evaporating 
on it is proposed. The critical temperature is found in the form of a function 
of the physical parameters, size, and initial subheating of the drops. 

When a drop is placed on a horizontal solid surface heated to a temperature T w which ex- 
ceeds the boiling point Ts, two situations can occur: when T w < TL, the drop runs over the 
surface and boils on it; when Tw > TL, a thin vapor interlayer separates the drop from the 
surface, i.e., the drop vaporizes in the spheroidal state [I]. Experimental values of the 
critical Leidenfrost temperature T L corresponding to such a shift in regimes and heat-exchange 
crisis depend very heavily on the conditions of the experiment and the method of measurement~ 
they vary from values exceeding T s by only hundredths of a degree [2, 3] to values several 
times greater than T s [3-5]. The latter fact is connected with the effect of diverse physical 
factors on the crisis and makes it necessary that a detailed theoretical study be mounted. 

The existence of the spheroidal state of the vaporizing drop is naturally related to the 
establishment of a balance between the force of gravity, attracting the drop to the surface, 
and the force of excess pressure in the vapor interlayer, keeping the drop from approaching 
the surface. If the drop is located on a rough surface, then the spheroidal state is possible 
only when h > A; when h ~ 4, the heat-exchange crisis begins, accompanied by running (spread- 
ing) of the drop over the surface. If the surface is perfectly smooth, then the deciding role 
in the advent of this crisis -- a theory of which was presented in [6] -- will be played by the 
dependence of the equilibrium temperature on the evaporation surface on the pressure in the 
vapor interlayer. However, as simple estimates for actual situations show, in both cases the 
value of T L -- T s usually turns out to be several orders lower than the empirically observed 
value -- if it is assumed that the drop is in thermodynamic equilibrium with its vapor and no 
special measures are taken in the experiments to maintain this state (see, e.g., [2, 3]). It 
can be said that allowing for the effects of molecular dynamic and thermal slip of the vapor 
in the interlayer (the presence of velocity and temperature jumps at its boundaries) and the 
forces of dispersive molecular interaction between the solid and liquid surfaces can signifi- 
cantly increase the theoretical value of T L -- Ts, but this increase is quite inadequate to ex- 
plain the available empirical data [2-5]. This has to do with the fact that the initial tem- 
perature To of drops falling on a heated surface is usually below the saturation temperature, 
and realization of the spheroidal state requires that the entire drop -- or at least its lower 
surface -- be heated to this temperature before spreading of the drop begins. 

Thus, there arises the very complex problem of the transient heating of drops. Solution 
of this problem requires simultaneous study of the hydrodynamics of the vapor interlayer, 
which is thinned under the influence of gravity and surface tension, and transfer of heat into 
the layer and into the drops, with allowance for the heat of phase transformation. 

For simplicity, below we examine a drop on a rough surface with A > I0 -~ cm, when we can 
ignore the effect of velocity and temperature jumps and the presence of dispersive interac- 
tion, as well as the dependence of the equilibrium state on the evaporation surface on the 
surface on the pressure in the interlayer. We also ignore radiative heat flow to the drop and 
its reverse effect on the local temperature of the surface underneath it, along with vaporiza- 
tion from the upper and lateral surfaces of the drop. (If necessary, all of these effects can 
be approximately accounted for by means of the considerations presented in [3, 4, 7].) We 
will also suppose that the vapor interlayer is plane-parallel, that the properties of the va- 
por in the layer are uniform, and that the phase transformation is insubstantial until the 
lower surface of the drop reaches the temperature Tso This allows us to ignore the effect of 
heat absorption as a result of vaporization during heating of the drop. 
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Fig. i. Dependence of relative Leidenfrost point on A/h, for uni- 
formly heated drops (a) and on A/h** for nonuniformly heated drops 
(b) with different drop subheatings: i) To/T s = 0.2; 2) 0.4; 3) 
0.6; 4) 0.8. 

The characteristic time of change in the thickness of the interlayer can be expressed as 
hldh/dtl -I. The characteristic times for establishment of a stationary temperature field and 
stationary velocity distribution in the layer are equal, respectively, to ~2/a" and p"h2/~. 
It is easily seen that with small h, the first time is significantly greater than the other 
two times (explicit estimates follow from the formulas presented below), i.e., the movement 
of the vapor and heat transfer in the interlayer can be examined in a quasistatic approxima- 
tion. 

The equations of mass and momentum conservation for an axisymmetric vapor flow in such 
an interlayer give us 

u (x, r) --  1 dp x ( h - -  x), 
2 F dr 

n nr h3 dp dh 
_ _  ~ jIl.2 - -  

2.~r u (x, r )  dx = - -  6c# dr dt 
0 

(1) 

Regarding (I) as the equation for pressure, we obtain 

3tt dh 
( R 2 - -  r2). ( 2 )  

P = P R  h 3 

I n t e g r a t i n g  (2) o v e r  t h e  l o w e r  s u r f a c e  o f  t h e  d rop  and e q u a t i n g  t h e  r e s u l t i n g  p r e s s u r e  
f o r c e  to  t h e  f o r c e  o f  g r a v i t y  minus  t h e  b u o y a n c y  f o r c e ,  we a r r i v e  a t  t h e  e q u a t i o n  

dh 8 R~h 3 (3) 
dt - -  - 9  ( p ' -  p") g 

I n e r t i a l  f o r c e s  were  n o t  c o n s i d e r e d  in  d e r i v i n g  ( 3 ) ,  s i n c e  t h e  a c c e l e r a t i o n  [d*h /d t21  i s  
u s u a l l y  much l e s s  t h a n  g. 

Given  t h e  c o n d i t i o n  h(O) = ho ,  t h e  s o l u t i o n  o f  Eq. (3) h a s  t he  fo rm 

t =  9 ~R ~ ( 1  1 ') 
16 (P' - -  P") g R ~  h 2 h~ , " 

Assuming that ho is much greater than the characteristic values of h at which drop heat- 
ing actually occurs, we obtain a relation connecting h and t and describing the dynamics of 
thinning of the vapor interlayer: 

h ~ (p'--~p~; grit " (4) 

To analyze the change in the temperature T* of the lower surface of the drop over time, 
it is necessary to solve a transient problem of heat conduction in a drop of the specified 
form. Here we assign the quasisteady heat flux q = X"(T w -- T*)/h on the lower surface of the 
drop and specify heat exchange with the surrounding vapor or gas--vapor medium, with a tempera- 
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ture Ts, on the upper and lateral surfaces. In the general case, the solution of such a prob- 
lem is very complicated and awkward, but it is not needed to explain the principal features 
of the process. Here we are primarily accounting for the fact that heat is transferred mainly 
through the lower surface of the drop, and we limit ourselves to analysis of only two limiting 
situations. In the first, where the characteristic time of temperature equalization inside 
the drop Ro2/a ' is much shorter than the characteristic heating time (the corresponding esti- 
mate the explicit form is also easily found on the basis of the results presented below), the 
temperature of the drop at any moment of time can be roughly assumed to be uniform. In the 
second situation, corresponding to satisfaction of the inverse force inequality at these mo- 
ments, only the region of the drop immediately bordering its lower surface is important, i.e., 
drop heating can be regarded as the heating of an infinite half-space. 

In the first case the kinetics of heating are described by the equation 

4 aRafl,.c,, dT* _ a~RZL" ( r  _ T , ) ,  
3 dt h 

the solution of which, with the condition T*(0) = To, has the form 

T * = T w - - ( T w - -  To) exp ( 
4p'c'G 

0 

The integral in the exponent is easily calculated by replacing the integration variable 
t by h in accordance with (3). We obtain 

T* = T~ - -  (T~ - -  To) exp ( - -  ~/h3) ,  

r 9 ~k" ] ~ / a ( R  )2 (5) 

The L e i d e n f r o s t  p o i n t  i s  d e t e r m i n e d  a s  t h e  t e m p e r a t u r e  T w a t  w h i c h  h i s  e x a c t l y  e q u a l  t o  
the height of the projections of the surface roughness 5. Then from (5) we obtain (T* = T s) 

TL _ 1 --(To/T~) 9 ~ = exp ( h~ 
T7 1--~ ' ~,---kT)" (6) 

The dependence of TL/T s on A/h, for different relative initial drop temperatures is shown 
in Fig. la. 

In the second case we investigate the heat conduction equation in the half-space x > 0 
with the initial and boundary conditions 

OT __ ~" T ~ o - - T  

0x ~' h x=o' 
T - +  Tul. . . . .  T -- To[,=o. 

With a sufficiency slow change in h over time, the stated problem reduces to that exam- 
ined in [8]. The temperature T* on the lower surface of the drop is equal to the following 
in this case: 

T* = To + (T~ - -  To) I - - e x p  ~,z h~ erfc ~, h ! " 
/ k 

(7) 

We again define the Leidenfrost point as that temperature T w at which h coincides with k 
at the moment when T* equals T s. Allowing for (4), we obtain the following from (7): 

TL I - -  (To/T~) 
T~ 1 - -  r 

, ~ = exp erfc , 

h** = ;~' 
r, 'c' (r,' - -  r  J G 

(8) 
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The dependence of TL/T s on ~ in (8) is similar to that in (6), but the expression for 
in terms of the physical parameters and A is quite different. The dependence of TL/T s on 
A/h** for different relative initial subheatings of the drop is shown in Fig. lb. 

It can easily be seen that the curves in Fig. Ib are similar to those in Fig. la and cor- 
respond to roughly the same type of dependence of the Leidenfrost point on the physical param- 
eters. The dependence of TL/T s on the ratio R/Ro is modified most strongly with an increase 
in the thermal conductivity of the liquid (with a gradual transition from the second of the 
situations being examined to the first): whereas h** is proportional to the first power of 
this ratio, h, is proportional to its square. The value or R/Ro can be obtained by solving 
the problem of the static equilibrium of a drop with surface tension at its boundary in a 
gravitational field. This problem has been studied repeatedly. In particular, the following 
asymptotes are valid for coarse and fine drops [3]: 

Ro / - r  _ 

Ro \ 3 ]  • 

Above we did not consider the intensive internal circulation characteristic of drops in 
the spheroidal state. It is obvious that convective heat transfer inside the drop makes it 
appreciably more probable that its temperature will be equalized. 

When To § T s, it follows from the results presented above that T L § Ts, i.e., within the 
framework of the model examined here, the Leidenfrost point is determined entirely by the ini- 
tial subheating of the drops. This is understandable from a physical point of view, since 
above, for simplicity, we ignored molecular slip at the boundaries of the vapor interlayer, 
forces of dispersive interaction between the solid and liquid surfaces, and the dependence of 
the equilibrium temperature on the vaporization surface on the pressure close to this surface. 

NOTATION 

a', a", diffusivity of the liquid and vapor; c', specific heat of the liquid; g, acceler- 
ation due to gravity; h,, h**, characteristic thicknesses of vapor interlayer h; p, PR, pres- 
sure in the interlayer and on its outer boundary; q, heat flux; R, Ro, radii of vapor inter- 
layer and spherical drop; r, radial coordinate; TL, Tw, Ts, T*, To, Leidenfrost point, temper- 
ature of heated wall, saturation temperature, temperature of lower surface of drop, and ini- 
tial temperature of drop, respectively; t, time; x, normal coordinate; A, height of surface 
roughness; %', X", thermal conductivity of liquid and vapor; ~, viscosity of vapor; p', p", 
density of liquid and vapor; 9, parameter introduced in (6) and (8); • capillary constant; 

o, surface tension. 
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